Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 370
1.
Support Care Cancer ; 32(4): 260, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38561474

PURPOSE: To explore the effects of compression therapy on chemotherapy-induced peripheral neuropathy (CIPN), anxiety, depression, and sleep disorders in breast cancer patients administered taxanes. METHODS: Eighty patients with breast cancer undergoing chemotherapy at Tangshan People's Hospital between October 2022 and July 2023 were randomly divided into control (n = 40) and intervention (n = 40) groups. The control group received routine care, while intervention group received compression therapy in addition to routine care (30 min before the infusion of chemotherapy drugs, patients wore surgical gloves on their hands that were one size smaller than the appropriate size and elastic socks on their feet until 30 min after the infusion). The incidence of CIPN, anxiety, depression, and sleep scores, were compared between these groups before and after compression therapy during chemotherapy cycles 2, 4, and 6. RESULTS: The general characteristics did not differ significantly between the groups (P > 0.05). The CIPN incidence, anxiety and depression scores, and sleep scores also did not differ significantly between the two groups before and after the intervention period (P > 0.05). After the fourth and sixth cycles of intervention, the incidence of CIPN (≥ 1 and ≥ 2), anxiety and depression scores, and sleep scores were significantly lower in the intervention group than in the control group (P < 0.05). CONCLUSION: Compression therapy can effectively reduce the incidence of CIPN, as well as improve the level of anxiety, depression, and sleep disorders in chemotherapy patients. Therefore, medical personnel should closely observe the physical and psychological changes in patients undergoing chemotherapy and provide corresponding preventive measures. REGISTRATION NUMBER: RMYY-LLKS-2022-054. DATE OF REGISTRATION: September 25, 2022.


Antineoplastic Agents , Breast Neoplasms , Bridged-Ring Compounds , Peripheral Nervous System Diseases , Humans , Female , Breast Neoplasms/drug therapy , Incidence , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/epidemiology , Peripheral Nervous System Diseases/drug therapy , Taxoids , Anxiety/epidemiology , Antineoplastic Agents/adverse effects
3.
ACS Macro Lett ; : 592-598, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683051

Polypropylene (PP)-based composites have attracted numerous attention as a replacement of prevailing cross-linked polyethylene (XLPE) for high-voltage insulation due to their ease of processing, recyclability, and excellent electrical performance. However, the poor resistances against high-temperature creep and thermal aging are obstacles to practical applications of PP-based thermoplastic high-voltage insulation. To address these problems, in this Letter, we synthesized an impact polypropylene copolymer (IPC) containing multifold long-chain branched (LCB) structures in phases, especially the interfaces between the PP matrix and the rubber phase. The results indicated that the structural stability of LCBIPC was significantly enhanced under extreme conditions. In comparison to IPC (without LCB structures), 24.1% less creep strain and 75.2% less unrecoverable deformation are achieved in LCBIPC at 90 °C. In addition, the thermal aging experiments were performed at 135 °C for 48 and 88 days for IPC and LCBIPC, respectively. The results show that the resistance against thermal aging was also enhanced in LCBIPC, which showed a 133% longer thermal aging life compared to IPC. Further results revealed that the interfacial layer between the PP matrix and the rubber phase was constructed in LCBIPC. The two phases are tightly linked by chemical bonds in LCB structures, leading to enforced constraints of the rubber phase at the micro level and better resistance performance against creep and thermal aging at the macro level. Evidently, the reported eco-friendly LCBIPC thermoplastic insulation shows great potential for applications in high-voltage cable insulation.

4.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38652117

Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.


Carrier Proteins , Nuclear Envelope , Nuclear Pore , Humans , Active Transport, Cell Nucleus , HeLa Cells , Homeostasis , Membrane Glycoproteins , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Carrier Proteins/metabolism
5.
Sci Immunol ; 8(90): eadf4699, 2023 Dec 22.
Article En | MEDLINE | ID: mdl-38134241

Immune cells sense the microenvironment to fine-tune their inflammatory responses. Patients with cryopyrin-associated periodic syndrome (CAPS), caused by mutations in the NLRP3 gene, develop autoinflammation triggered by nonantigenic cues such as from the environment. However, the underlying mechanisms are poorly understood. Here, we uncover that KCNN4, a calcium-activated potassium channel, links PIEZO-mediated mechanotransduction to NLRP3 inflammasome activation. Yoda1, a PIEZO1 agonist, lowered the threshold for NLRP3 inflammasome activation. PIEZO-mediated sensing of stiffness and shear stress increased NLRP3-dependent inflammation. Myeloid-specific deletion of PIEZO1/2 protected mice from gouty arthritis. Mechanistically, activation of PIEZO1 triggers calcium influx, which activates KCNN4 to evoke potassium efflux and promotes NLRP3 inflammasome activation. Activation of PIEZO signaling was sufficient to activate the inflammasome in cells expressing CAPS-causing NLRP3 mutants via KCNN4. Last, pharmacological inhibition of KCNN4 alleviated autoinflammation in cells of patients with CAPS and in mice bearing a CAPS mutation. Thus, PIEZO-dependent mechanical inputs boost inflammation in NLRP3-dependent diseases, including CAPS.


Cryopyrin-Associated Periodic Syndromes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Mechanotransduction, Cellular , Cryopyrin-Associated Periodic Syndromes/genetics , Inflammation , Intermediate-Conductance Calcium-Activated Potassium Channels , Ion Channels/genetics
6.
Mil Med Res ; 10(1): 66, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38111039

BACKGROUND: The essential roles of platelets in thrombosis have been well recognized. Unexpectedly, thrombosis is prevalent during thrombocytopenia induced by cytotoxicity of biological, physical and chemical origins, which could be suffered by military personnel and civilians during chemical, biological, radioactive, and nuclear events. Especially, thrombosis is considered a major cause of mortality from radiation injury-induced thrombocytopenia, while the underlying pathogenic mechanism remains elusive. METHODS: A mouse model of radiation injury-induced thrombocytopenia was built by exposing mice to a sublethal dose of ionizing radiation (IR). The phenotypic and functional changes of platelets and megakaryocytes (MKs) were determined by a comprehensive set of in vitro and in vivo assays, including flow cytometry, flow chamber, histopathology, Western blotting, and chromatin immunoprecipitation, in combination with transcriptomic analysis. The molecular mechanism was investigated both in vitro and in vivo, and was consolidated using MK-specific knockout mice. The translational potential was evaluated using a human MK cell line and several pharmacological inhibitors. RESULTS: In contrast to primitive MKs, mature MKs (mMKs) are intrinsically programmed to be apoptosis-resistant through reprogramming the Bcl-xL-BAX/BAK axis. Interestingly, mMKs undergo minority mitochondrial outer membrane permeabilization (MOMP) post IR, resulting in the activation of the cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway via the release of mitochondrial DNA. The subsequent interferon-ß (IFN-ß) response in mMKs upregulates a GTPase guanylate-binding protein 2 (GBP2) to produce large and hyperreactive platelets that favor thrombosis. Further, we unmask that autophagy restrains minority MOMP in mMKs post IR. CONCLUSIONS: Our study identifies that megakaryocytic mitochondria-cGAS/STING-IFN-ß-GBP2 axis serves as a fundamental checkpoint that instructs the size and function of platelets upon radiation injury and can be harnessed to treat platelet pathologies.


Radiation Injuries , Thrombocytopenia , Thrombosis , Humans , Animals , Mice , Megakaryocytes/metabolism , Megakaryocytes/pathology , Thrombocytopenia/etiology , Apoptosis , Nucleotidyltransferases/metabolism , Thrombosis/metabolism
7.
Animal Model Exp Med ; 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38013618

BACKGROUND: Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength. However, current anti-resorptive drugs carry a risk of various complications. The deep learning-based efficacy prediction system (DLEPS) is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes. This study aimed to explore the protective effect and potential mechanisms of cinobufotalin (CB), a traditional Chinese medicine (TCM), on bone loss. METHODS: DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis. Micro-CT, histological and morphological analysis were applied for the bone protective detection of CB, and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells (hBMMSCs) were also investigated. The underlying mechanism was verified using qRT-PCR, Western blot (WB), immunofluorescence (IF), etc. RESULTS: A safe concentration (0.25 mg/kg in vivo, 0.05 µM in vitro) of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs. Both BMPs/SMAD and Wnt/ß-catenin signaling pathways participated in CB-induced osteogenic differentiation, further regulating the expression of osteogenesis-associated factors, and ultimately promoting osteogenesis. CONCLUSION: Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss, further promoting osteogenic differentiation/function of hBMMSCs, with BMPs/SMAD and Wnt/ß-catenin signaling pathways involved.

8.
Kidney Int ; 104(5): 956-974, 2023 Nov.
Article En | MEDLINE | ID: mdl-37673285

After acute kidney injury (AKI), renal tubular epithelial cells (RTECs) are pathologically characterized by intracellular lipid droplet (LD) accumulation, which are involved in RTEC injury and kidney fibrosis. However, its pathogenesis remains incompletely understood. The protein, αKlotho, primarily expressed in RTECs, is well known as an anti-aging hormone wielding versatile functions, and its membrane form predominantly acts as a co-receptor for fibroblast growth factor 23. Here, we discovered a connection between membrane αKlotho and intracellular LDs in RTECs. Fluorescent fatty acid (FA) pulse-chase assays showed that membrane αKlotho deficiency in RTECs, as seen in αKlotho homozygous mutated (kl/kl) mice or in mice with ischemia-reperfusion injury (IRI)-induced AKI, inhibited FA mobilization from LDs by impairing adipose triglyceride lipase (ATGL)-mediated lipolysis and lipophagy. This resulted in LD accumulation and FA underutilization. IRI-induced alterations were more striking in αKlotho deficiency. Mechanistically, membrane αKlotho deficiency promoted E3 ligase peroxin2 binding to ubiquitin-conjugating enzyme E2 D2, resulting in ubiquitin-mediated degradation of ATGL which is a common molecular basis for lipolysis and lipophagy. Overexpression of αKlotho rescued FA mobilization by preventing ATGL ubiquitination, thereby lessening LD accumulation and fibrosis after AKI. This suggests that membrane αKlotho is indispensable for the maintenance of lipid homeostasis in RTECs. Thus, our study identified αKlotho as a critical regulator of lipid turnover and homeostasis in AKI, providing a viable strategy for preventing tubular injury and the AKI-to-chronic kidney disease transition.

9.
Front Immunol ; 14: 1155229, 2023.
Article En | MEDLINE | ID: mdl-37564660

Background: Our previous studies found that high-intensity focused ultrasound (HIFU) stimulated tumor-specific T cells in a mouse H22 tumor model, and adoptive transfer of the T cells from HIFU-treated mice could subsequently elicit stronger inhibition on the growth and progression of the implanted tumors. The aim of this study was to investigate the mechanism of T cells from focused ultrasound ablation in HIFU-mediated immunomodulation. Methods: Sixty H22 tumor-bearing mice were treated by either HIFU or sham-HIFU, and 30 naïve syngeneic mice served as controls. All mice were euthanized on day 14 after HIFU and splenic T cell suspensions were obtained in each group. Using an adoptive cell transfer model, a total of 1 × 106 T cells from HIFU treated-mice were intravenously injected into each syngeneic H22 tumor-bearing mouse twice on day 3 and 4, followed by the sacrifice for immunological assessments at 14 days after the adoptive transfer. Results: T cells from HIFU-treated mice could significantly enhance the cytotoxicity of CTLs (p < 0.001), with a significant increase of TNF-α (p < 0.001) and IFN-γ secretion (p < 0.001). Compared to control and sham-HIFU groups, the number of Fas ligand+ and perforin+ tumor-infiltrating lymphocytes (TILs) and apoptotic H22 tumor cells were significantly higher (p < 0.001) in the HIFU group. There were linear correlations between apoptotic tumor cells and Fas ligand+ TILs (r = 0.9145, p < 0.001) and perforin+ TILs (r = 0.9619, p < 0.001). Conclusion: T cells from HIFU-treated mice can subsequently mediate cellular antitumor immunity, which may play an important role in the HIFU-based immunomodulation.


Immunotherapy, Adoptive , T-Lymphocytes, Cytotoxic , Mice , Animals , Fas Ligand Protein , Perforin , Immunity, Cellular
10.
Front Pharmacol ; 14: 1194545, 2023.
Article En | MEDLINE | ID: mdl-37554985

Background: Cholangiocarcinoma (CCA) is a highly lethal and aggressive epithelial tumor of the hepatobiliary system. A poor prognosis, propensity for relapse, low chance of cure and survival are some of its hallmarks. Pemigatinib, the first targeted treatment for CCA in the United States, has been demonstrated to have a significant response rate and encouraging survival data in early-phase trials. The adverse events (AEs) of pemigatinib must also be determined. Objective: To understand more deeply the safety of pemigatinib in the real world through data-mining of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Methods: Disproportionality analysis was employed in a retrospective pharmacovigilance investigation to identify the AEs linked to pemigatinib use as signals. Data were collected between 1 January 2020 to 30 June 2022. Four data-mining methods (proportional reporting odds ratio; proportional reporting ratio; Bayesian confidence propagation neural networks of information components; empirical Bayes geometric means) were used to calculate disproportionality. Results: A total of 203 cases using pemigatinib as the prime-suspect medication were found in our search, which involved 99 preferred terms (PTs). Thirteen signals of pemigatinib-induced AEs in seven System Organ Classes were detected after confirming the four algorithms simultaneously. Nephrolithiasis was an unexpected significant AE not listed on the drug label found in our data-mining. Comparison of the differences between pemigatinib and platinum drugs in terms of 33 PTs revealed that 13 PTs also met the criteria of the four algorithms. Ten of these PTs were identical to those compared with all other drugs, in which (excluding a reduction in phosphorus in blood) other PT signal values were higher than those of all other drugs tested. However, comparison of the differences between pemigatinib and infigratinib in terms of the 33 PTs revealed no significant signals in each algorithm method. Conclusion: Some significant signals were detected between pemigatinib use and AEs. PTs with apparently strong signals and PTs not mentioned in the label should be taken seriously.

11.
Cell Mol Immunol ; 20(10): 1216-1231, 2023 10.
Article En | MEDLINE | ID: mdl-37644165

Although DNA mutation drives stem cell aging, how mutation-accumulated stem cells obtain clonal advantage during aging remains poorly understood. Here, using a mouse model of irradiation-induced premature aging and middle-aged mice, we show that DNA mutation accumulation in hematopoietic stem cells (HSCs) during aging upregulates their surface expression of major histocompatibility complex class II (MHCII). MHCII upregulation increases the chance for recognition by bone marrow (BM)-resident regulatory T cells (Tregs), resulting in their clonal expansion and accumulation in the HSC niche. On the basis of the establishment of connexin 43 (Cx43)-mediated gap junctions, BM Tregs transfer cyclic adenosine monophosphate (cAMP) to aged HSCs to diminish apoptotic priming and promote their survival via activation of protein kinase A (PKA) signaling. Importantly, targeting the HSC-Treg interaction or depleting Tregs effectively prevents the premature/physiological aging of HSCs. These findings show that aged HSCs use an active self-protective mechanism by entrapping local Tregs to construct a prosurvival niche and obtain a clonal advantage.


Hematopoietic Stem Cells , T-Lymphocytes, Regulatory , Bone Marrow , Cellular Senescence , DNA/metabolism
12.
PLoS One ; 18(8): e0290665, 2023.
Article En | MEDLINE | ID: mdl-37651367

To effectively identify the key material parameters of different zones of concrete face rockfill dams and improve the efficiency of parameter optimization, a global sensitivity analysis method of parameters based on sparse polynomial chaotic expansion (sPCE) is proposed in this paper. The latin hypercube sampling method is used to select multiple groups of material parameters, and then finite element method is used to calculate the displacement of dam characteristic nodes in dam body. On this basis, the displacement is expanded by sPCE, and the polynomial basis function is reconstructed by orthogonal matching pursuit to improve the construction and analysis efficiency of the proxy model. According to the chaos coefficients, Sobol' indices are calculated to evaluate the influence of the material parameters and their interaction on different displacements of the dam. The results show that the sPCE model can accurately simulate dam displacement and its statistical characteristics with a relatively small sample size. The sensitivity of the same parameter has spatial variability, and under the influence of parameter levels and spatial distribution of different materials, the parameter sensitivity ranking of different zones has certain differences. The proposed method provides a new reference to sensitivity analysis and uncertainty analysis for practical engineering.


Advance Directives , Engineering , China , Models, Statistical , Sample Size
13.
Antioxidants (Basel) ; 12(7)2023 Jul 18.
Article En | MEDLINE | ID: mdl-37507986

Active fractions and constituents with antioxidant and lipid-lowering activities were investigated using bio-assay-guided isolation and identification. The data showed that the antioxidant fraction of A. cepa was AC50%, the main constituents of which were quercetin and isoquercitrin, by way of both ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) and bio-assay-guided purification and elucidation. Similarly, the lipid-lowering active fraction of A. cepa was AC30% with the main constituents of 3,4-dihydroxybenzoic acid and quercetin 3,4'-O-diglucoside. Also, bio-assay-guided isolation led to the isolation and identification of five known compounds with a purity of more than 98%, and quercetin was both the best free radical scavenger and lipid-lowering constituent. Moreover, the mechanism of the lipid-lowering effect of AC30% might be its reduction in mRNA expression levels of sterol regulatory element binding protein 2 (SREBP2) and FAS gene in lipid synthesis. Otherwise, reducing the mRNA expression level of lipid synthesis genes, including SREBP1, SREBP2, fatty acid synthetase (FASN), ß-Hydroxy ß-methylglutaryl-CoA (HMGCR), stearoyl CoA desaturase 1 (SCD1), and increasing the mRNA expression level of lipid decomposition gene, such as carnitine palmitoyl transferease-1 (CPT1), might be involved in the lipid-lowering activity of quercetin. This study suggested that Allium cepa might be used to prevent and treat oxidative stress and dislipidemia-related disorders, including NAFLD.

15.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-37279650

Intramuscular lipid deposition is important for meat quality improvement. microRNAs and their target mRNAs provide a new approach for studying the mechanism of fat deposition. The present study aimed to investigate the effect of miR-130b duplex (miR-130b-5p, miR-130b-3p) and its target gene KLF3 in regulating goat intramuscular adipocyte differentiation. Goat intramuscular preadipocytes were isolated from 7-d-old male Jianzhou big-ear goats and identified by Oil red O staining after differentiation induction. miR-130b-5p and miR-130b-3p mimics or inhibitors and their corresponding controls were transfected into goat intramuscular preadipocytes, respectively, and differentiation was induced by 50µM oleic acid for 48 h. Oil red O and Bodipy staining indicated that both miR-130b-5p and miR-130b-3p can reduce lipid droplets accumulation and triglyceride (TG) content (P < 0.01). Differentiation markers C/EBPα, C/EBPß, PPARγ, pref1, fatty acids synthesis markers ACC, FASN, DGAT1, DGAT2, AGPAT6, TIP47, GPAM, ADRP, AP2, SREBP1, and TG markers LPL, ATGL, HSL were assessed by qPCR. All the markers measured were downregulated by miR-130b-5p and miR-130b-3p analog (P < 0.01), suggesting that miR-130b inhibits goat intramuscular adipocyte adipogenic differentiation, fatty acids synthesis, and lipid lipolysis. To examine the mechanism of miR-130b duplex inhibition of lipid deposition, TargetScan, miRDB, and starBase were used to predict the potential targets, KLF3 was found to be the only one intersection. Furthermore, the 3'UTR of KLF3 was cloned, qPCR analysis and dual luciferase activity assay showed that both miR-130b-5p and miR-130b-3p could directly regulate KLF3 expression (P < 0.01). In addition, overexpression and interference of KLF3 were conducted, it was found that KLF3 positively regulated lipid droplets accumulation by Oil red O, Bodipy staining, and TG content detection (P < 0.01). Quantitative PCR result indicated that KLF3 overexpression promoted lipid droplets accumulation relative genes C/EBPß, PPARγ, pref1, ACC, FASN, DGAT1, DGAT2, AGPAT6, TIP47, GPAM, ADRP, SREBP1, LPL, and ATGL expression (P < 0.01). Downregulation of KLF3 inhibited the expression of genes such as C/EBPα, C/EBPß, PPARγ, pref1, TIP47, GPAM, ADRP, AP2, LPL, and ATGL expression (P < 0.01). Taken together, these results indicate that miR-130b duplex could directly inhibit KLF3 expression, then attenuated adipogenic and TG synthesis genes expression, thus leading to its anti-adipogenic effect.


microRNAs (miRNAs) are small (19 to 24 nucleotides), single-stranded, noncoding RNAs that are evolutionarily conserved and can be complimentary bound to the 3ʹ-untranslated region (3ʹUTR) of their target mRNA for cleavage or translation inhibition to participate in almost all biological processes. We demonstrated miR-130b duplex (miR-130b-3p/miR-130b-5p) negatively regulates goat intramuscular preadipocyte lipid droplets accumulation by targeting Krüppel-like factor 3 (KLF3) expression. This research opens new visions to study and understand the functions and mechanisms of goat miRNAs in lipid deposition.


Adipocytes , MicroRNAs , Male , Animals , Adipocytes/metabolism , Goats/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Lipid Droplets/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Adipogenesis/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Fatty Acids/metabolism , Lipids , Cell Differentiation
16.
BMC Med ; 21(1): 226, 2023 06 26.
Article En | MEDLINE | ID: mdl-37365596

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) targeted therapy combined with endocrine therapy has been recommended as an alternative treatment strategy for patients with hormone receptor (HR)-positive, HER2-positive metastatic breast cancer (MBC). This study aimed to evaluate the role of pyrotinib, an oral pan-HER irreversible tyrosine kinase inhibitor, in combination with letrozole for patients with HR-positive, HER2-positive MBC. METHODS: In this multi-center, phase II trial, HR-positive and HER2-positive MBC patients who were not previously treated for metastasis disease were enrolled. Patients received daily oral pyrotinib 400 mg and letrozole 2.5 mg until disease progression, unacceptable toxicity, or withdrawal of consent. The primary endpoint was the clinical benefit rate (CBR) assessed by an investigator according to the Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS: From November 2019 to December 2021, 53 patients were enrolled and received pyrotinib plus letrozole. As of August 2022, the median follow-up duration was 11.6 months (95% confidence interval [CI], 8.7-14.0 months). The CBR was 71.7% (95% CI, 57.7-83.2%), and the objective response rate was 64.2% (95% CI, 49.8-76.9%). The median progression-free survival was 13.7 months (95% CI, 10.7-18.7 months). The most common treatment-related adverse event of grade 3 or higher was diarrhea (18.9%). No treatment-related deaths were reported, and one patient experienced treatment discontinuation due to adverse event. CONCLUSIONS: Our preliminary results suggested that pyrotinib plus letrozole is feasible for the first-line treatment of patients with HR-positive and HER2-positive MBC, with manageable toxicities. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04407988.


Breast Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/pathology , Letrozole/therapeutic use , Receptor, ErbB-2 , Treatment Outcome
17.
Kidney Dis (Basel) ; 9(2): 104-117, 2023 Apr.
Article En | MEDLINE | ID: mdl-37065609

Introduction: Diabetic kidney disease (DKD) is a major source of chronic kidney disease and end-stage renal disease. The injury of glomerulus in DKD is the primary focus; however, proximal tubulopathy also is an indispensable factor in the progression of DKD. Interleukin-37 (IL-37), an anti-inflammatory cytokine of IL-1 family member, has been demonstrated to be associated with diabetes and its relative complications in recent years, but the effect of IL-37 on renal fibrosis in DKD is unclear. Methods: We established streptozotocin plus high fat diet-induced DKD mice model with wild type or IL-37 transgenic mice. Masson and HE staining, immunostaining, and Western blot were used to observe renal fibrosis. In addition, RNA-sequencing was applied to explore the potential mechanisms of IL-37. In vitro, treatment of human proximal tubular (HK-2) cells with 30 mmol/L high glucose or 300 ng/mL recombinant IL-37 further elucidated the possible mechanism of IL-37 inhibition of DKD renal fibrosis. Results: In this work, we first verified the decreased expression of IL-37 in kidney of DKD patient and its correlation with clinical features of renal impairment. Moreover, IL-37 expression markedly attenuated proteinuria and renal fibrosis in DKD mice. Using RNA-sequencing, we found and confirmed a novel role of IL-37 in ameliorating fatty acid oxidation (FAO) reduction of renal tubular epithelial cells both in vivo and in intro. In addition, further mechanistic studies showed that IL-37 alleviated the FAO reduction in HK-2 cells and renal fibrosis in DKD mice through upregulating carnitine palmitoyl-transferase 1A (CPT1A), an important catalyzer for FAO pathway. Conclusion: These data suggest that IL-37 attenuates renal fibrosis via regulating FAO in renal epithelial cells. Upregulation of IL-37 levels might be an effective therapeutic avenue for DKD.

18.
Biotechnol Genet Eng Rev ; : 1-19, 2023 Mar 26.
Article En | MEDLINE | ID: mdl-36966397

Bilateral primary breast cancer (BPBC) patients have a worse prognosis. Tools for accurately predicting mortality risk in patients with BPBC are lacking in clinical practice. We aimed to develop a clinically useful prediction model for the death of BPBC patients. A total of 19,245 BPBC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were randomly divided into the training set (n = 13,471) and test set (5,774). Models for predicting the 1-, 3- and 5-year death risk of BPBC patients were developed. Multivariate Cox regression analysis was used to develop the all-cause death prediction model, and competitive risk analysis was used to establish the cancer-specific death prediction model. The performance of the model was assessed by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI), sensitivity, specificity and accuracy. Age, married status, interval time and first and second tumor's status were associated with both all-cause death and cancer-specific death (all P < 0.05). The AUC of Cox regression models predicted 1-, 3- and 5-year all-cause death was 0.854 (95% CI, 0.835-0.874), 0.838 (95% CI, 0.823-0.852) and 0.799 (95% CI, 0.785-0.812), respectively. The AUC of competitive risk models to predict 1-, 3- and 5-year cancer-specific death was 0.878 (95% CI, 0.859-0.897), 0.866 (95% CI, 0.852-0.879) and 0.854 (95% CI, 0.841-0.867), respectively. Nomograms were developed to predict all-cause death and cancer-specific death in BPBC patients, which may provide tools for clinicians to predict the death risk of BPBC patients.

19.
Nat Immunol ; 24(1): 30-41, 2023 01.
Article En | MEDLINE | ID: mdl-36443515

Inflammasome complexes are pivotal in the innate immune response. The NLR family pyrin domain containing protein 3 (NLRP3) inflammasome is activated in response to a broad variety of cellular stressors. However, a primary and converging sensing mechanism by the NLRP3 receptor initiating inflammasome assembly remains ill defined. Here, we demonstrate that NLRP3 inflammasome activators primarily converge on disruption of endoplasmic reticulum-endosome membrane contact sites (EECS). This defect causes endosomal accumulation of phosphatidylinositol 4-phosphate (PI4P) and a consequent impairment of endosome-to-trans-Golgi network trafficking (ETT), necessary steps for endosomal recruitment of NLRP3 and subsequent inflammasome activation. Lowering endosomal PI4P levels prevents endosomal association of NLRP3 and inhibits inflammasome activation. Disruption of EECS or ETT is sufficient to enhance endosomal PI4P levels, to recruit NLRP3 to endosomes and to potentiate NLRP3 inflammasome activation. Mice with defects in ETT in the myeloid compartment are more susceptible to lipopolysaccharide-induced sepsis. Our study thus identifies a distinct cellular mechanism leading to endosomal NLRP3 recruitment and inflammasome activation.


Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Immunity, Innate , Carrier Proteins/metabolism , Endosomes/metabolism
20.
J Gerontol A Biol Sci Med Sci ; 78(4): 711-717, 2023 03 30.
Article En | MEDLINE | ID: mdl-36574506

BACKGROUND: This study was performed to derive and validate a prognostic prediction model for individualized estimation of mortality risk among the frail oldest old (aged 80 years or older). METHODS: This analysis was based on the prospective open cohort study from the Chinese Longevity and Health Longitudinal Survey. A total of 14 118 frail oldest old were included from the 2002 wave to 2014 waves; the study outcome was all-cause mortality. Available predictors included frailty, demographics, and social factors. Cox models were used to estimate the coefficients of the predictors and least absolute shrinkage and selection operator was used for selecting predictors. Model performance was measured by discrimination and calibration with internal validation by bootstrapping. We also developed a nomogram to visualize and predict the 3-year mortality risk based on the obtained prognostic prediction model. RESULTS: During the 16-years follow-up, 10 410 (76.42%) deaths were identified. The final model comprises the following factors: frailty, age, sex, race, birthplace, education, occupation, marital status, residence, economic condition, number of children, and the question "who do you ask for help first when in trouble." The model has valid predictive ability as measured and validated by Harrell's C statistic (0.602) and calibration plots. CONCLUSIONS: This study provides a basic prognostic prediction model to quantify absolute mortality risk for the frail oldest old. Future studies are needed, firstly, to update, adjust, and perform external validation of the present model by using phenotypic frailty, and secondly, to add biomarkers, environmental, and psychological factors to the prediction model.


Frail Elderly , Frailty , Aged , Aged, 80 and over , Humans , Prospective Studies , Prognosis , Cohort Studies
...